Osmoregulatory alterations in taurine uptake by cultured human and bovine lens epithelial cells.
نویسندگان
چکیده
PURPOSE Comparative assessment of cultured human lens epithelial cells (HLECs) and bovine lens epithelial cells (BLECs) established the nature of the relationship between taurine-concentrating capability and intracellular polyol accumulation or extracellular hypertonicity. METHODS The kinetic characteristics of active taurine accumulation based on the measurement of in vitro [3H]-taurine uptake were resolved by side-to-side review of cultured HLECs and BLECs pre-exposed to either galactose-supplemented medium or extracellular hypertonicity. Competitive RT-PCR was used to appraise variation in taurine transporter (TauT) mRNA abundance from cells maintained in hyperosmotic medium over a 72-hour exposure period. RESULTS The capacity to accumulate [3H]-taurine was significantly lowered after prolonged (20-hour) incubation of cultured BLECs in 40 mM galactose in contrast to HLECs, the latter cells' velocity curve being indistinguishable from control cells in physiological medium. Inhibition of the intracellular taurine transport site appeared to be noncompetitive, in that there was a marked reduction in the V(max) without significant alteration in the K(m) to a high-affinity transport site. Galactitol content in BLECs exceeded five times that found in HLECs. The coadministration of the aldose reductase inhibitor, sorbinil, with 40 mM galactose completely prevented the inhibitory effect of galactose on [3H]-taurine uptake. Acute exposure (3 hours) of HLECs and BLECs to a range of 10 to 40 mM galactitol or 10 to 40 mM galactose plus sorbinil-supplemented medium suggested by Dixon plot that neither galactitol nor galactose interacted with the extracellular taurine transport site. In contrast, [3H]-taurine accumulation was markedly elevated in both HLECs and BLECs after prolonged exposure to galactose-free medium made hyperosmotic by supplementation with sodium chloride. The enhanced taurine uptake capacity involved increase in peak velocity (V(max)) without significant change in Michaelis-Menten constant (K(m)). Cultured HLECs and BLECs responded to hypertonicity with an inducible but transitory upregulation of TauT mRNA. CONCLUSIONS These results demonstrate that lens epithelial cells express a high-affinity TauT protein capable of active uptake, but predisposed to inhibition by intracellular galactitol when the sugar alcohol is present in sufficiently high concentration to interfere with cell metabolism. Furthermore, lens epithelial cells respond to hypertonic stress by raising taurine transport activity. The increase in taurine uptake is due to an increase in the number of high-affinity TauTs expressed as a result of an increase in the manifestation of taurine mRNA stemming from exposure to hypertonic medium.
منابع مشابه
Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 1: A hypertonicity-induced protein enhances myo-inositol transport.
PURPOSE The nature of the association between attenuated myo-inositol-concentrating capability, intracellular polyol accumulation, and hypertonicity-enhanced myo-inositol uptake was investigated in cultured bovine lens epithelial cells (BLECs) exposed to high ambient galactose. METHODS The kinetic characteristics of myo-inositol accumulation based on the measurement of in vitro myo-[3H]inosit...
متن کاملOsmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 4: Induction pattern of Na(+)-myo-inositol cotransporter mRNA under hypertonic conditions denoting an early-onset, interactive, protective mechanism against water stress.
PURPOSE To examine the effect of hypertonicity on the induction of the Na(+)-myo-inositol (Na(+)-MI) cotransporter(s) in cultured bovine lens epithelial cells (BLECs). METHODS Na(+)-MI cotransporter 626-bp reverse transcription-polymerase chain reaction product amplified from lens cell RNA and aldose reductase (AR) cDNA probes were used to measure respective mRNA content by Northern blot anal...
متن کاملHypertonic stress increases NaK ATPase, taurine, and myoinositol in human lens and retinal pigment epithelial cultures.
PURPOSE Recent evidence suggests that taurine and myoinositol may serve as organic osmolytes in a number of cells, including lens and retinal pigment epithelia, but the mechanism for their increased accumulation in response to hypertonic stress is not known. To assess whether NaK ATPase contributed to the elevated levels of taurine and myoinositol in cells exposed to hypertonic media, we measur...
متن کاملOsmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 5. Mechanism of the myo-inositol efflux pathway.
PURPOSE Cultured bovine lens epithelial cells (BLECs) exposed to sodium hypertonicity respond with an accumulation of intracellular myo-inositol. Using BLECs initially maintained at hypertonicity and reacting to a decrease in medium osmolality, a mechanism for the tonicity-activated release of myo-inositol was recognized. Alternatively, BLECs acclimated to sodium hypertonicity and subsequently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 43 2 شماره
صفحات -
تاریخ انتشار 2002